Limit $F$-signature functions of two-variable binomial hypersurfaces
Limit $F$-signature functions of two-variable binomial hypersurfaces
The $F$-signature is a fundamental numerical invariant of singularities in positive characteristic. Its positivity detects strong $F$-regularity, an important class of singularities related to KLT singularities in characteristic zero. In this paper, we compute the limiting $F$-signature function of binomial and other related hypersurfaces in two variables as the characteristic $p \to \infty$. In particular, we show it is a piecewise polynomial function, and relate it to the normalized volume.
Izzet Coskun、Anna Brosowsky、Kevin Tucker、Suchitra Pande
数学
Izzet Coskun,Anna Brosowsky,Kevin Tucker,Suchitra Pande.Limit $F$-signature functions of two-variable binomial hypersurfaces[EB/OL].(2025-04-25)[2025-05-23].https://arxiv.org/abs/2504.18656.点此复制
评论