|国家预印本平台
首页|The spectral map for weighted Cauchy matrices is an involution

The spectral map for weighted Cauchy matrices is an involution

The spectral map for weighted Cauchy matrices is an involution

来源:Arxiv_logoArxiv
英文摘要

Let $N$ be a natural number. We consider weighted Cauchy matrices of the form \[ \mathcal{C}_{a,A}=\left\{\frac{\sqrt{A_j A_k}}{a_k+a_j}\right\}_{j,k=1}^N, \] where $A_1,\dots,A_N$ are positive real numbers and $a_1,\dots,a_N$ are distinct positive real numbers, listed in increasing order. Let $b_1,\dots,b_N$ be the eigenvalues of $\mathcal{C}_{a,A}$, listed in increasing order. Let $B_k$ be positive real numbers such that $\sqrt{B_k}$ is the Euclidean norm of the orthogonal projection of the vector \[ v_A=(\sqrt{A_1},\dots,\sqrt{A_N}) \] onto the $k$'th eigenspace of $\mathcal{C}_{a,A}$. We prove that the spectral map $(a,A)\mapsto (b,B)$ is an involution and discuss simple properties of this map.

Alexander Pushnitski、Sergei Treil

数学

Alexander Pushnitski,Sergei Treil.The spectral map for weighted Cauchy matrices is an involution[EB/OL].(2025-04-25)[2025-05-21].https://arxiv.org/abs/2504.18707.点此复制

评论