Solutions for autonomous semilinear elliptic equations
Solutions for autonomous semilinear elliptic equations
We study existence of nontrivial solutions to problem \begin{equation*} \left\lbrace \begin{array}{rcll} -\Delta u &=& \lambda u+f(u)&\text{ in }\Omega,\\ u&=&0&\text{ on }\partial \Omega, \end{array}\right. \end{equation*} where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, $N\geq 1$, $\lambda \in \mathbb{R}$ and $f:\mathbb{R}\to \mathbb{R}$ is any locally Lipschitz function with nonpositive primitive. A complete description is obtained for $N=1$ and partial results for $N\geq 2$.
数学
.Solutions for autonomous semilinear elliptic equations[EB/OL].(2025-04-26)[2025-05-14].https://arxiv.org/abs/2504.18877.点此复制
评论