|国家预印本平台
首页|Selecting Optimal Candidate Profiles in Adversarial Environments Using Conjoint Analysis and Machine Learning

Selecting Optimal Candidate Profiles in Adversarial Environments Using Conjoint Analysis and Machine Learning

Selecting Optimal Candidate Profiles in Adversarial Environments Using Conjoint Analysis and Machine Learning

来源:Arxiv_logoArxiv
英文摘要

Conjoint analysis, an application of factorial experimental design, is a popular tool in social science research for studying multidimensional preferences. In such political analysis experiments, respondents are often asked to choose between two hypothetical political candidates with randomly selected features, which can include partisanship, policy positions, gender, and race. We consider the problem of identifying optimal candidate profiles. Because the number of unique feature combinations far exceeds the total number of observations in a typical conjoint experiment, it is impossible to determine the optimal profile exactly. To address this identification challenge, we derive an optimal stochastic intervention that represents a probability distribution of various attributes aimed at achieving the most favorable average outcome. We first consider an environment where one political party optimizes their candidate selection. We then move to the more realistic case where two political parties optimize their own candidate selection simultaneously and in opposition to each other. We apply the proposed methodology to an existing candidate choice conjoint experiment concerning vote choice for US president. We find that, in contrast to the non-adversarial approach, expected outcomes in the adversarial regime fall within range of historical electoral outcomes, with optimal strategies suggested by the method more likely to match the actual observed candidates compared to strategies derived from a non-adversarial approach. These findings highlight that incorporating adversarial dynamics into conjoint analysis can provide more realistic insights into strategic analysis while opening up novel ways to test the empirical implications of institutional design.

Connor T. Jerzak、Priyanshi Chandra、Rishi Hazra

政治理论世界政治

Connor T. Jerzak,Priyanshi Chandra,Rishi Hazra.Selecting Optimal Candidate Profiles in Adversarial Environments Using Conjoint Analysis and Machine Learning[EB/OL].(2025-04-26)[2025-07-01].https://arxiv.org/abs/2504.19043.点此复制

评论