|国家预印本平台
首页|Spectral properties of the Cauchy transform on modified Bergman spaces

Spectral properties of the Cauchy transform on modified Bergman spaces

Spectral properties of the Cauchy transform on modified Bergman spaces

来源:Arxiv_logoArxiv
英文摘要

In this paper, we determine the singular values $s_n(T_{\alpha,\beta})$ and $s_n(R_{\alpha,\beta})$ of the operators $T_{\alpha,\beta}=\mathcal C\mathbb P_{\alpha,\beta}$ and $R_{\alpha,\beta}=\mathbb P_{\alpha,\beta}\mathcal C\mathbb P_{\alpha,\beta}$ where $\mathcal C$ is the integral Cauchy transform and $\mathbb P_{\alpha,\beta}$ is the orthogonal projection from $L^2(\mathbb D,\mu_{\alpha,\beta})$ onto the modified Bergman space $\mathcal A^2(\mathbb D,\mu_{\alpha,\beta})$. These singular values will be expressed in terms of some series involving hypergeometric functions. We show that in both cases the sequence $n^{\alpha+1}s_n(.)$ has a finite limit as $n\to+\infty$.

Khaled Chbichib、Noureddine Ghiloufi、Safa Snoun

数学

Khaled Chbichib,Noureddine Ghiloufi,Safa Snoun.Spectral properties of the Cauchy transform on modified Bergman spaces[EB/OL].(2025-04-27)[2025-05-28].https://arxiv.org/abs/2504.19286.点此复制

评论