$O(1/k)$ Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation
$O(1/k)$ Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation
Two-time-scale stochastic approximation is an algorithm with coupled iterations which has found broad applications in reinforcement learning, optimization and game control. While several prior works have obtained a mean square error bound of $O(1/k)$ for linear two-time-scale iterations, the best known bound in the non-linear contractive setting has been $O(1/k^{2/3})$. In this work, we obtain an improved bound of $O(1/k)$ for non-linear two-time-scale stochastic approximation. Our result applies to algorithms such as gradient descent-ascent and two-time-scale Lagrangian optimization. The key step in our analysis involves rewriting the original iteration in terms of an averaged noise sequence which decays sufficiently fast. Additionally, we use an induction-based approach to show that the iterates are bounded in expectation.
Siddharth Chandak
自动化基础理论计算技术、计算机技术
Siddharth Chandak.$O(1/k)$ Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation[EB/OL].(2025-04-27)[2025-06-25].https://arxiv.org/abs/2504.19375.点此复制
评论