A $\Gamma$-convergence result for 2D type-I superconductors
A $\Gamma$-convergence result for 2D type-I superconductors
We consider a 2D non-standard Modica-Mortola type functional. This functional arises from the Ginzburg-Landau theory of type-I superconductors in the case of an infinitely long sample and in the regime of comparable penetration and coherence lengthes. We prove that the functional $\Gamma$-converges to the perimeter functional. This result is a first step in understanding how to extend the results of Conti, Goldman, Otto, Serfaty (2018) to the regime of non vanishing Ginzburg-Landau parameter $\kappa$.
Alessandro Cosenza、Michael Goldman、Alessandro Zilio
物理学数学
Alessandro Cosenza,Michael Goldman,Alessandro Zilio.A $\Gamma$-convergence result for 2D type-I superconductors[EB/OL].(2025-04-28)[2025-05-21].https://arxiv.org/abs/2504.19587.点此复制
评论