Fractional Sobolev Spaces for the Singular-perturbed Laplace Operator in the $L^p$ setting
Fractional Sobolev Spaces for the Singular-perturbed Laplace Operator in the $L^p$ setting
We study the perturbed Sobolev spaces ${H^{s,p}_\alpha(\mathbb{R}^d)}$, associated with singular perturbation $\Delta_\alpha$ of Laplace operator in Euclidean space of dimensions 2 and 3. We extend the $L^2$ theory of perturbed Sobolev space to the $L^p$ case, finding an analogue description in terms of standard Sobolev spaces. This enables us to extend the Strichartz estimates to the energy space and to treat the {local well-posedness} of the {Nonlinear Schr\"odinger equation} associated with this singular perturbation, with the contraction method.
Vladimir Georgiev、Mario Rastrelli
数学物理学
Vladimir Georgiev,Mario Rastrelli.Fractional Sobolev Spaces for the Singular-perturbed Laplace Operator in the $L^p$ setting[EB/OL].(2025-04-28)[2025-05-19].https://arxiv.org/abs/2504.19732.点此复制
评论