|国家预印本平台
首页|DeepVoid: A Deep Learning Void Detector

DeepVoid: A Deep Learning Void Detector

DeepVoid: A Deep Learning Void Detector

来源:Arxiv_logoArxiv
英文摘要

We present DeepVoid, an application of deep learning trained on a physical definition of cosmic voids to detect voids in density fields and galaxy distributions. By semantically segmenting the IllustrisTNG simulation volume using the tidal tensor, we train a deep convolutional neural network to classify local structure using a U-Net architecture for training and prediction. The model achieves a void F1 score of 0.96 and a Matthews correlation coefficient over all structural classes of 0.81 for dark matter particles in IllustrisTNG with interparticle spacing of $\lambda=0.33 h^{-1} \text{Mpc}$. We then apply the machine learning technique of curricular learning to enable the model to classify structure in data with significantly larger intertracer separation. At the highest tracer separation tested, $\lambda=10 h^{-1} \text{Mpc}$, the model achieves a void F1 score of 0.89 and a Matthews correlation coefficient of 0.6 on IllustrisTNG subhalos.

Sam Kumagai、Michael S. Vogeley、Miguel A. Aragon-Calvo、Kelly A. Douglass、Segev BenZvi、Mark Neyrinck

天文学

Sam Kumagai,Michael S. Vogeley,Miguel A. Aragon-Calvo,Kelly A. Douglass,Segev BenZvi,Mark Neyrinck.DeepVoid: A Deep Learning Void Detector[EB/OL].(2025-04-29)[2025-07-21].https://arxiv.org/abs/2504.21134.点此复制

评论