|国家预印本平台
首页|Existence of variational solutions to doubly nonlinear systems in nondecreasing domains

Existence of variational solutions to doubly nonlinear systems in nondecreasing domains

Existence of variational solutions to doubly nonlinear systems in nondecreasing domains

来源:Arxiv_logoArxiv
英文摘要

For $q \in (0, \infty)$, we consider the Cauchy-Dirichlet problem to doubly nonlinear systems of the form \begin{align*} \partial_t \big( |u|^{q-1}u \big) - \operatorname{div} \big( D_\xi f(x,u,Du) \big) = - D_u f(x,u,Du) \end{align*} in a bounded noncylindrical domain $E \subset \mathbb{R}^{n+1}$. We assume that $x \mapsto f(x,u,\xi)$ is integrable, that $(u,\xi) \mapsto f(x,u,\xi)$ is convex, and that $f$ satisfies a $p$-coercivity condition for some $p \in (1,\infty)$. However, we do not impose any specific growth condition from above on $f$. For nondecreasing domains that merely satisfy $\mathcal{L}^{n+1}(\partial E) = 0$, we prove the existence of variational solutions $u \in C^{0}([0,T];L^{q+1}(E,\mathbb{R}^N))$ via a nonlinear version of the method of minimizing movements. Moreover, under additional assumptions on $E$ and a $p$-growth condition on $f$, we show that $|u|^{q-1}u$ admits a weak time derivative in the dual $(V^{p,0}(E))^{\prime}$ of the subspace $V^{p,0}(E) \subset L^p(0,T;W^{1,p}(\Omega,\mathbb{R}^N))$ that encodes zero boundary values.

Leah Sch?tzler、Christoph Scheven、Jarkko Siltakoski、Calvin Stanko

非线性科学数学

Leah Sch?tzler,Christoph Scheven,Jarkko Siltakoski,Calvin Stanko.Existence of variational solutions to doubly nonlinear systems in nondecreasing domains[EB/OL].(2025-04-30)[2025-05-28].https://arxiv.org/abs/2505.00148.点此复制

评论