Existence of variational solutions to doubly nonlinear systems in nondecreasing domains
Existence of variational solutions to doubly nonlinear systems in nondecreasing domains
For $q \in (0, \infty)$, we consider the Cauchy-Dirichlet problem to doubly nonlinear systems of the form \begin{align*} \partial_t \big( |u|^{q-1}u \big) - \operatorname{div} \big( D_\xi f(x,u,Du) \big) = - D_u f(x,u,Du) \end{align*} in a bounded noncylindrical domain $E \subset \mathbb{R}^{n+1}$. We assume that $x \mapsto f(x,u,\xi)$ is integrable, that $(u,\xi) \mapsto f(x,u,\xi)$ is convex, and that $f$ satisfies a $p$-coercivity condition for some $p \in (1,\infty)$. However, we do not impose any specific growth condition from above on $f$. For nondecreasing domains that merely satisfy $\mathcal{L}^{n+1}(\partial E) = 0$, we prove the existence of variational solutions $u \in C^{0}([0,T];L^{q+1}(E,\mathbb{R}^N))$ via a nonlinear version of the method of minimizing movements. Moreover, under additional assumptions on $E$ and a $p$-growth condition on $f$, we show that $|u|^{q-1}u$ admits a weak time derivative in the dual $(V^{p,0}(E))^{\prime}$ of the subspace $V^{p,0}(E) \subset L^p(0,T;W^{1,p}(\Omega,\mathbb{R}^N))$ that encodes zero boundary values.
Leah Sch?tzler、Christoph Scheven、Jarkko Siltakoski、Calvin Stanko
非线性科学数学
Leah Sch?tzler,Christoph Scheven,Jarkko Siltakoski,Calvin Stanko.Existence of variational solutions to doubly nonlinear systems in nondecreasing domains[EB/OL].(2025-04-30)[2025-05-28].https://arxiv.org/abs/2505.00148.点此复制
评论