|国家预印本平台
首页|A new approximate Eastin-Knill theorem

A new approximate Eastin-Knill theorem

A new approximate Eastin-Knill theorem

来源:Arxiv_logoArxiv
英文摘要

Transversal encoded gatesets are highly desirable for fault tolerant quantum computing. However, a quantum error correcting code which exactly corrects for local erasure noise and supports a universal set of transversal gates is ruled out by the Eastin-Knill theorem. Here we provide a new approximate Eastin-Knill theorem for the single-shot regime when we allow for some probability of error in the decoding. In particular, we show that a quantum error correcting code can support a universal set of transversal gates and approximately correct for local erasure if and only if the conditional min-entropy of the Choi state of the encoding and noise channel is upper bounded by a simple function of the worst-case error probability. Our no-go theorem can be computed by solving a semidefinite program, and, in the spirit of the original Eastin-Knill theorem, is formulated in terms of a condition that is both necessary and sufficient, ensuring achievability whenever it is passed. As an example, we find that with $n=100$ physical qutrits we can encode $k=1$ logical qubit in the $W$-state code, which admits a universal transversal set of gates and corrects for single subsystem erasure with error probability of $\varepsilon = 0.005$. To establish our no-go result, we leverage tools from the resource theory of asymmetry, where, in the single-shot regime, a single (output state-dependent) resource monotone governs all state purifications.

Rhea Alexander

计算技术、计算机技术

Rhea Alexander.A new approximate Eastin-Knill theorem[EB/OL].(2025-05-01)[2025-06-12].https://arxiv.org/abs/2505.00427.点此复制

评论