On the continuity of solutions to the anisotropic $N$-Laplacian with $L^1$ lower order term
On the continuity of solutions to the anisotropic $N$-Laplacian with $L^1$ lower order term
We establish the continuity of bounded solutions to the anisotropic elliptic equation $$-\sum\limits_{i=1}^N\Big(|u_{x_i}|^{p_i-2} u_{x_i}\Big)_{x_i}=f(x),\quad x\in \Omega,\quad f(x)\in L^1(\Omega)$$ under the conditions $$\min\limits_{1\leqslant i\leqslant N} p_i >1,\quad \sum\limits_{i=1}^N \frac{1}{p_i}=1$$ and $$\lim\limits_{\rho\rightarrow 0}\,\sup\limits_{x\in \Omega}\int\limits^{\rho}_0\Big(\int\limits_{B_r(x)}|f(y)|\,dy\Big)^{\frac{1}{N-1}}\frac{dr}{r}=0.$$ In the standard case $p_1=...=p_N=N$, these conditions recover the known results for the $N$-Laplacian.
Igor Skrypnik、Yevgeniia Yevgenieva、Mariia Savchenko
数学
Igor Skrypnik,Yevgeniia Yevgenieva,Mariia Savchenko.On the continuity of solutions to the anisotropic $N$-Laplacian with $L^1$ lower order term[EB/OL].(2025-05-06)[2025-07-16].https://arxiv.org/abs/2505.03381.点此复制
评论