Chebyshev polynomials on equipotential curves
Chebyshev polynomials on equipotential curves
For an analytic function $\phi(z)$ with a Laurent expansion at $\infty$ of the form \begin{equation*} \phi(z)=z+c_{0}+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\cdots, \end{equation*} the Faber polynomial $F_n$ of degree $n$ associated to $\phi$ is the polynomial part of the Laurent series at $\infty$ of $\phi(z)^n$. We prove that the $n$th Chebyshev polynomial $T_{n,L_r}$ for the equipotential curve $L_r=\{z\in \mathbb{C}:|\phi(z)|=r \}$ converges to $F_n$ as $r\to\infty$. The proof makes use of the fact that zero is the strongly unique best approximation to the monomial $z^n$ on the unit circle by polynomials of degree less than $n$.
Erwin Mi?a-Díaz、Olof Rubin
数学
Erwin Mi?a-Díaz,Olof Rubin.Chebyshev polynomials on equipotential curves[EB/OL].(2025-05-06)[2025-05-31].https://arxiv.org/abs/2505.03967.点此复制
评论