|国家预印本平台
首页|Nearly spanning cycle in the percolated hypercube

Nearly spanning cycle in the percolated hypercube

Nearly spanning cycle in the percolated hypercube

来源:Arxiv_logoArxiv
英文摘要

Let $Q^d$ be the $d$-dimensional binary hypercube. We form a random subgraph $Q^d_p\subseteq Q^d$ by retaining each edge of $Q^d$ independently with probability $p$. We show that, for every constant $\varepsilon>0$, there exists a constant $C=C(\varepsilon)>0$ such that, if $p\ge C/d$, then with high probability $Q^d_p$ contains a cycle of length at least $(1-\varepsilon)2^d$. This confirms a long-standing folklore conjecture, stated in particular by Condon, Espuny D\'iaz, Gir\~ao, K\"uhn, and Osthus [Hamiltonicity of random subgraphs of the hypercube, Mem. Amer. Math. Soc. 305 (2024), No. 1534].

Michael Anastos、Sahar Diskin、Joshua Erde、Mihyun Kang、Michael Krivelevich、Lyuben Lichev

数学

Michael Anastos,Sahar Diskin,Joshua Erde,Mihyun Kang,Michael Krivelevich,Lyuben Lichev.Nearly spanning cycle in the percolated hypercube[EB/OL].(2025-05-07)[2025-06-04].https://arxiv.org/abs/2505.04436.点此复制

评论