|国家预印本平台
首页|A family of polynomials and related congruences and series

A family of polynomials and related congruences and series

A family of polynomials and related congruences and series

来源:Arxiv_logoArxiv
英文摘要

In this paper we study a family of polynomials $$S_n^{(m)}(x):=\sum_{i,j=0}^n\binom ni^m\binom nj^m\binom{i+j}ix^{i+j}\ (m,n=0,1,2,\ldots).$$ For example, we show that $$\sum_{k=0}^{p-1}S_k^{(0)}(x)\equiv\frac x{2x-1}\left(1+\left(\frac{1-4x^2}p\right)\right)\pmod p $$ for any odd prime $p$ and integer $x\not\equiv1/2\pmod p$, where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also formulate some open conjectures on related congruences and series for $1/\pi$. For example, we conjecture that $$\sum_{k=0}^\infty(7k+1)\frac{S_k^{(2)}(1/11)}{9^k}=\frac{5445}{104\sqrt{39}\,\pi}$$ and $$\sum_{k=0}^\infty(1365k+181)\frac{S_k^{(2)}(1/18)}{16^k}=\frac{1377}{\sqrt2\,\pi}.$$

Zhi-Wei Sun

数学

Zhi-Wei Sun.A family of polynomials and related congruences and series[EB/OL].(2025-05-05)[2025-05-29].https://arxiv.org/abs/2505.02767.点此复制

评论