|国家预印本平台
首页|Serre functors for Lie superalgebras and tensoring with $S^{\mathrm{top}}(\mathfrak{g}_{\overline{1}})$

Serre functors for Lie superalgebras and tensoring with $S^{\mathrm{top}}(\mathfrak{g}_{\overline{1}})$

Serre functors for Lie superalgebras and tensoring with $S^{\mathrm{top}}(\mathfrak{g}_{\overline{1}})$

来源:Arxiv_logoArxiv
英文摘要

We show that the action of the Serre functor on the subcategory of projective-injective modules in a parabolic BGG category $\mathcal O$ of a quasi-reductive finite dimensional Lie superalgebra is given by tensoring with the top component of the symmetric power of the odd part of our superalgebra. As an application, we determine, for all strange Lie suepralgebras, when the subcategory of projective injective modules in the parabolic category $\mathcal O$ is symmetric.

Chih-Whi Chen、Volodymyr Mazorchuk

数学

Chih-Whi Chen,Volodymyr Mazorchuk.Serre functors for Lie superalgebras and tensoring with $S^{\mathrm{top}}(\mathfrak{g}_{\overline{1}})$[EB/OL].(2025-05-06)[2025-05-23].https://arxiv.org/abs/2505.03197.点此复制

评论