|国家预印本平台
首页|Induction automorphe: repr\'esentations unitaires et spectre r\'esiduel

Induction automorphe: repr\'esentations unitaires et spectre r\'esiduel

Induction automorphe: repr\'esentations unitaires et spectre r\'esiduel

来源:Arxiv_logoArxiv
英文摘要

Let $E/F$ be a finite cyclic extension of local fields of characteristic zero, of degree $d$, and $\kappa$ be a character of $F^\times$ whose kernel is $\mathrm{N}_{E/F}(E^\times)$. For $m\in \mathbb{N}^*$, we prove that every irreducible unitary representation of $\mathrm{GL}_m(E)$ has a $\kappa$-lift to $\mathrm{GL}_{md}(F)$, given by a character identity as in Henniart-Herb [HH]. Let ${\bf E}/{\bf F}$ be a finite cyclic extension of number fields, of degree $d$, and $\mathfrak{K}$ be a character of $\mathbb{A}_{\bf F}^\times$ whose kernel is ${\bf F}^\times \mathrm{N}_{{\bf E}/{\bf F}}(\mathbb{A}_{\bf E}^\times)$. We prove that every automorphic discrete representation of $\mathrm{GL}_m(\mathbb{A}_{\bf E})$ has a (strong) $\mathfrak{K}$-lift to $\mathrm{GL}_{md}(\mathbb{A}_{\bf F})$, i.e. compatible with the local lifting maps. We describe the image and the fibres of these local and global lifting maps. Locally, we also treat the elliptic representations.

Bertrand Lemaire、Martin Fatou

数学

Bertrand Lemaire,Martin Fatou.Induction automorphe: repr\'esentations unitaires et spectre r\'esiduel[EB/OL].(2025-05-05)[2025-06-08].https://arxiv.org/abs/2505.02775.点此复制

评论