Structural Alignment in Link Prediction
Structural Alignment in Link Prediction
While Knowledge Graphs (KGs) have become increasingly popular across various scientific disciplines for their ability to model and interlink huge quantities of data, essentially all real-world KGs are known to be incomplete. As such, with the growth of KG use has been a concurrent development of machine learning tools designed to predict missing information in KGs, which is referred to as the Link Prediction Task. The majority of state-of-the-art link predictors to date have followed an embedding-based paradigm. In this paradigm, it is assumed that the information content of a KG is best represented by the (individual) vector representations of its nodes and edges, and that therefore node and edge embeddings are particularly well-suited to performing link prediction. This thesis proposes an alternative perspective on the field's approach to link prediction and KG data modelling. Specifically, this work re-analyses KGs and state-of-the-art link predictors from a graph-structure-first perspective that models the information content of a KG in terms of whole triples, rather than individual nodes and edges. Following a literature review and two core sets of experiments, this thesis concludes that a structure-first perspective on KGs and link prediction is both viable and useful for understanding KG learning and for enabling cross-KG transfer learning for the link prediction task. This observation is used to create and propose the Structural Alignment Hypothesis, which postulates that link prediction can be understood and modelled as a structural task. All code and data used for this thesis are open-sourced. This thesis was written bilingually, with the main document in English and an informal extended summary in Irish. An Irish-language translation dictionary of machine learning terms (the Focl\'oir Tr\'achtais) created for this work is open-sourced as well.
Jeffrey Seathrún Sardina
计算技术、计算机技术
Jeffrey Seathrún Sardina.Structural Alignment in Link Prediction[EB/OL].(2025-05-08)[2025-06-29].https://arxiv.org/abs/2505.04939.点此复制
评论