|国家预印本平台
首页|Regularity estimates of fractional heat semigroups related with uniformly elliptic operators

Regularity estimates of fractional heat semigroups related with uniformly elliptic operators

Regularity estimates of fractional heat semigroups related with uniformly elliptic operators

来源:Arxiv_logoArxiv
英文摘要

Let $L = -{\rm div}( A(x) \cdot \nabla ) + V(x)$ be a second-order uniformly elliptic operator on $\mathbb{ R }^{n}$ $(n\geq 3)$, where $A(x)$ is a real symmetric matrix satisfying standard ellipticity conditions, and $V$ is a nonnegative potential belonging to the reverse H\"older class. For $ \alpha \in (0,1) $, we study regularity estimates of the fractional heat semigroups $ \{ exp (-tL^ {\alpha } )\} _ { t > 0 }$, via the subordination formula and the fundamental solution of the associated uniformly parabolic equation $ \partial_t u + Lu = 0 $. This approach avoids the use of Fourier transforms and is applicable to second-order differential operators whose heat kernels satisfy Gaussian upper bounds. As an application, we characterize the Campanato-type space $\Lambda_{ L , \gamma } \left( \mathbb{R}^n \right)$ via the fractional heat semigroups $\{exp ( - t L ^ {\alpha } ) \} _ { t > 0 } $.

Kai Zhao、Honglei Shi、Pengtao Li

数学

Kai Zhao,Honglei Shi,Pengtao Li.Regularity estimates of fractional heat semigroups related with uniformly elliptic operators[EB/OL].(2025-05-08)[2025-06-30].https://arxiv.org/abs/2505.05333.点此复制

评论