|国家预印本平台
首页|Hardy spaces of harmonic quasiconformal mappings and Baernstein's theorem

Hardy spaces of harmonic quasiconformal mappings and Baernstein's theorem

Hardy spaces of harmonic quasiconformal mappings and Baernstein's theorem

来源:Arxiv_logoArxiv
英文摘要

Suppose $\mathcal{S}_H^0(K)$, $K\ge 1$, is the class of normalized $K$-quasiconformal harmonic mappings in the unit disk. We obtain Baernstein type extremal results for the analytic and co-analytic parts of harmonic functions in the major geometric subclasses (e.g. convex, starlike, close-to-convex, convex in one direction) of $\mathcal{S}_H^0(K)$. We then use these results to obtain integral mean estimates for the respective classes. Furthermore, we find the range of $p>0$ such that these geometric classes of quasiconformal mappings are contained in the harmonic Hardy space $h^p$, thereby refining some earlier results of Nowak. Our findings extend the recent developments on harmonic quasiconformal mappings by Li and Ponnusamy.

Suman Das、Jie Huang、Antti Rasila

数学

Suman Das,Jie Huang,Antti Rasila.Hardy spaces of harmonic quasiconformal mappings and Baernstein's theorem[EB/OL].(2025-05-08)[2025-06-06].https://arxiv.org/abs/2505.05028.点此复制

评论