|国家预印本平台
首页|Error Analysis of Deep PDE Solvers for Option Pricing

Error Analysis of Deep PDE Solvers for Option Pricing

Error Analysis of Deep PDE Solvers for Option Pricing

来源:Arxiv_logoArxiv
英文摘要

Option pricing often requires solving partial differential equations (PDEs). Although deep learning-based PDE solvers have recently emerged as quick solutions to this problem, their empirical and quantitative accuracy remain not well understood, hindering their real-world applicability. In this research, our aim is to offer actionable insights into the utility of deep PDE solvers for practical option pricing implementation. Through comparative experiments in both the Black--Scholes and the Heston model, we assess the empirical performance of two neural network algorithms to solve PDEs: the Deep Galerkin Method and the Time Deep Gradient Flow method (TDGF). We determine their empirical convergence rates and training time as functions of (i) the number of sampling stages, (ii) the number of samples, (iii) the number of layers, and (iv) the number of nodes per layer. For the TDGF, we also consider the order of the discretization scheme and the number of time steps.

Jasper Rou

数学

Jasper Rou.Error Analysis of Deep PDE Solvers for Option Pricing[EB/OL].(2025-05-08)[2025-07-16].https://arxiv.org/abs/2505.05121.点此复制

评论