基于生理信号的情绪识别方法研究
基于生理信号的情绪识别在心理健康干预与人机交互等应用中具有重要价值。近年来,多模态情感识别技术的快速发展为该任务提供了新的技术支撑。然而,由于个体间生理信号的高度差异性,深度神经网络在跨主体任务中往往面临性能退化的问题。为此,本文提出了一种融合卷积神经网络和Transformer编码器块的多模态神经网络模型,并在此基础上引入域泛化机制,以同时提升模型的特征建模能力与跨主体的泛化性能。随后,本文在DEAP数据集上进行了多模态生理信号的情绪识别实验,实验结果表明该方法达到了出色性能。
Emotion recognition based on physiological signals is of considerable significance in applications such as mental health interventions and human-computer interaction. In recent years, the rapid advancement of multimodal affective computing has offered new technical support for this task. Nevertheless, the substantial inter-subject variability in physiological signals poses a major challenge, often leading to performance degradation of deep neural networks in cross-subject settings. To address this, we propose a multimodal neural architecture that combines convolutional networks with Transformer encoders. Built upon this foundation, a domain generalization strategy is further introduced to jointly enhance the model’s representational capacity and its generalizability across unseen subjects. Experiments conducted on the DEAP dataset demonstrate that the proposed approach delivers strong performance in multimodal physiological signal-based emotion recognition.
杜庭宇、田正宇、李红凯、冯录凤、徐保民、刘宸宇
北京交通大学计算机科学与技术学院,100044 北京交通大学计算机科学与技术学院,100044 北京交通大学计算机科学与技术学院,100044 北京交通大学计算机科学与技术学院,100044 北京交通大学计算机科学与技术学院,100044 南洋理工大学计算与数据科学学院,639798
计算技术、计算机技术
深度学习情绪识别多模态生理信号
deep learningemotion recognitonmultimodal physiological signals
杜庭宇,田正宇,李红凯,冯录凤,徐保民,刘宸宇.基于生理信号的情绪识别方法研究[EB/OL].(2025-05-12)[2025-05-14].http://www.paper.edu.cn/releasepaper/content/202505-32.点此复制
评论