|国家预印本平台
首页|基于机器学习的事件选股方法研究

基于机器学习的事件选股方法研究

中文摘要英文摘要

本文构建了一种融合机器学习与事件驱动策略的智能选股系统,重点针对分析师事件与新闻事件进行量化建模。在分析师事件建模中,通过构建首次覆盖强度指标、评级跃迁度和高收益目标溢价率三类特征,结合动态权重机制评估市场影响,并采用XGBoost模型进行预测。针对新闻事件,提出FINBERT-BiLSTM混合模型:利用金融领域预训练的FINBERT提取文本情感与事件类型特征,通过双向LSTM捕捉时序动态演化规律。实验基于2016-2025年A股数据,以沪深300为基准,对比线性模型、XGBoost和FINBERT-BiLSTM的性能。实验结果表明,两类事件模型均能有效捕捉市场信号,其中基于分析师事件的XGBoost模型在收益性方面更具优势,而新闻事件模型在风险控制上表现突出,验证了事件驱动策略在量化选股中的应用价值。????

his paper constructs an intelligent stock selection system that integrates machine learning with event-driven strategies, focusing on quantitative modeling of analyst events and news events. In modeling analyst events, it evaluates market impact by constructing three types of features: initial coverage intensity, rating transition degree, and high yield target premium rate, along with a dynamic weighting mechanism, and employs the XGBoost model for prediction. For news events, a FINBERT-BiLSTM hybrid model is proposed: utilizing the pre-trained FINBERT model in the financial domain to extract sentiment and event type features, while capturing temporal dynamic evolution patterns through bidirectional LSTM. The experiments are based on A-share data from 2016 to 2025, benchmarking against the CSI 300, and comparing the performance of linear models, XGBoost, and FINBERT-BiLSTM. The experimental results indicate that both event models effectively capture market signals, with the XGBoost model based on analyst events demonstrating superior profitability and the news event model excelling in risk control, validating the application value of event-driven strategies in quantitative stock selection.

周逸星、万能

北京邮电大学电子工程学院,北京 100876北京邮电大学电子工程学院,北京 100876

财政、金融计算技术、计算机技术

股票预测事件驱动机器学习

stock forecastsevent-drivenmachine learning

周逸星,万能.基于机器学习的事件选股方法研究[EB/OL].(2025-05-13)[2025-05-17].http://www.paper.edu.cn/releasepaper/content/202505-37.点此复制

评论