|国家预印本平台
首页|一种基于全同态加密的联邦学习方案

一种基于全同态加密的联邦学习方案

中文摘要英文摘要

近年来,联邦学习逐步发展为一种新型的隐私保护解决方案。该技术在训练过程中通过传递模型参数和梯度而非原始样本数据的方式,实现对样本数据的隐私保护。尽管联邦学习避免了数据的直接暴露,但近年来已有诸多方法能够从交互的中间参数中推断出用户的敏感教据。本文的核心思想在于,基于最新的全同态加密技术对经典联邦学习方案进行全方位改进,以获得安全性、功能性及实用性三方面的提升。基于全同态加密算法的功能特性我们的联邦学习方案能够支持对复杂损失函数的高精度近似计算,可应对更为复杂的训练目标和任务;在更好保护各参与方数据安全的同时,能显著提升训练效率。

In recent years, federated learning has evolved to provide a new solution for privacy preservation. During the training process, federated learning passes models and gradients rather than sample data as a way to protect the privacy of the sample data. Although federated learning has avoided direct exposure of data, many methods have been proposed in recent years to infer user-sensitive data from the exchanged intermediate parameters. The core idea of this paper is to improve the classical federated learning scheme based on the latest fully homomorphic encryption technology in all aspects to obtain security, functionality and practicality improvements. Based on the functionality of the fully homomorphic encryption algorithm, our federated learning scheme can support high-precision approximation of complex loss functions and can cope with more complex training objectives and tasks; it can significantly improve the training efficiency while better protecting the data security of each participant.

黎琳、郭玉琪

网络空间安全学院,北京交通大学,100044网络空间安全学院,北京交通大学,100044

计算技术、计算机技术

密码学联邦学习逻辑回归同态加密隐私保护

ryptographyfederated learninglogistic regressionhomomorphic encryptionprivacy protection

黎琳,郭玉琪.一种基于全同态加密的联邦学习方案[EB/OL].(2025-05-13)[2025-06-25].http://www.paper.edu.cn/releasepaper/content/202505-35.点此复制

评论