An estimate of the Bergman distance on Riemann surfaces
An estimate of the Bergman distance on Riemann surfaces
Let $M$ be a hyperbolic Riemann surface with the first eigenvalue $\lambda_1(M)>0$. Let $\rho$ denote the distance from a fixed point $x_0\in{M}$ and $r_x$ the injectivity radius at $x$. We show that there exists a numerical constant $c_0>0$ such that if $r_x\ge c_0 \lambda_1(M)^{-3/4} \rho(x)^{-1/2}$ holds outside some compact set of $M$, then the Bergman distance verifies $d_B(x,x_0) \gtrsim \log [1+\rho(x)]$.
Bo-Yong Chen、Yuanpu Xiong
数学
Bo-Yong Chen,Yuanpu Xiong.An estimate of the Bergman distance on Riemann surfaces[EB/OL].(2025-05-09)[2025-06-24].https://arxiv.org/abs/2505.05774.点此复制
评论