KBSM of lens spaces $L(p,2)$ and $L(4k,2k+1)$
KBSM of lens spaces $L(p,2)$ and $L(4k,2k+1)$
J. Hoste and J. H. Przytycki computed the Kauffman bracket skein module (KBSM) of lens spaces in their papers published in 1993 and 1995. Using a basis for the KBSM of a fibered torus, we construct new bases for the KBSMs of two families of lens spaces: $L(p,2)$ and $L(4k,2k+1)$ with $k\neq 0$. For KBSM of $L(0,1) = {\bf S}^{2}\times S^{1}$, we find a new generating set that yields its decomposition into a direct sum of cyclic modules.
Mieczyslaw K. Dabkowski、Cheyu Wu
数学
Mieczyslaw K. Dabkowski,Cheyu Wu.KBSM of lens spaces $L(p,2)$ and $L(4k,2k+1)$[EB/OL].(2025-05-09)[2025-07-02].https://arxiv.org/abs/2505.06188.点此复制
评论