|国家预印本平台
首页|SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation

SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation

SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation

来源:Arxiv_logoArxiv
英文摘要

Evaluating text summarization quality remains a critical challenge in Natural Language Processing. Current approaches face a trade-off between performance and interpretability. We present SEval-Ex, a framework that bridges this gap by decomposing summarization evaluation into atomic statements, enabling both high performance and explainability. SEval-Ex employs a two-stage pipeline: first extracting atomic statements from text source and summary using LLM, then a matching between generated statements. Unlike existing approaches that provide only summary-level scores, our method generates detailed evidence for its decisions through statement-level alignments. Experiments on the SummEval benchmark demonstrate that SEval-Ex achieves state-of-the-art performance with 0.580 correlation on consistency with human consistency judgments, surpassing GPT-4 based evaluators (0.521) while maintaining interpretability. Finally, our framework shows robustness against hallucination.

Tanguy Herserant、Vincent Guigue

计算技术、计算机技术

Tanguy Herserant,Vincent Guigue.SEval-Ex: A Statement-Level Framework for Explainable Summarization Evaluation[EB/OL].(2025-05-04)[2025-06-04].https://arxiv.org/abs/2505.02235.点此复制

评论