|国家预印本平台
首页|Characterizing GPU Energy Usage in Exascale-Ready Portable Science Applications

Characterizing GPU Energy Usage in Exascale-Ready Portable Science Applications

Characterizing GPU Energy Usage in Exascale-Ready Portable Science Applications

来源:Arxiv_logoArxiv
英文摘要

We characterize the GPU energy usage of two widely adopted exascale-ready applications representing two classes of particle and mesh solvers: (i) QMCPACK, a quantum Monte Carlo package, and (ii) AMReXCastro, an adaptive mesh astrophysical code. We analyze power, temperature, utilization, and energy traces from double-/single (mixed)-precision benchmarks on NVIDIA's A100 and H100 and AMD's MI250X GPUs using queries in NVML and rocm_smi_lib, respectively. We explore application-specific metrics to provide insights on energy vs. performance trade-offs. Our results suggest that mixed-precision energy savings range between 6-25% on QMCPACK and 45% on AMReX-Castro. Also, we found gaps in the AMD tooling used on Frontier GPUs that need to be understood, while query resolutions on NVML have little variability between 1 ms-1 s. Overall, application level knowledge is crucial to define energy-cost/science-benefit opportunities for the codesign of future supercomputer architectures in the post-Moore era.

William F. Godoy、Jeffrey S. Vetter、Matthew D. Sinclair、Jason Lowe-Power、Bobby R. Bruce、Oscar Hernandez、Paul R. C. Kent、Maria Patrou、Kazi Asifuzzaman、Narasinga Rao Miniskar、Pedro Valero-Lara

天文学计算技术、计算机技术

William F. Godoy,Jeffrey S. Vetter,Matthew D. Sinclair,Jason Lowe-Power,Bobby R. Bruce,Oscar Hernandez,Paul R. C. Kent,Maria Patrou,Kazi Asifuzzaman,Narasinga Rao Miniskar,Pedro Valero-Lara.Characterizing GPU Energy Usage in Exascale-Ready Portable Science Applications[EB/OL].(2025-05-08)[2025-07-01].https://arxiv.org/abs/2505.05623.点此复制

评论