Machine learning-based prediction of species mass fraction and flame characteristics in partially premixed turbulent jet flame
Machine learning-based prediction of species mass fraction and flame characteristics in partially premixed turbulent jet flame
This study explores the integration of machine learning (ML) techniques with large eddy simulation (LES) for predicting species mass fraction and flame characteristics in partially premixed turbulent jet flames. The LES simulations, conducted using STAR-CCM+ software, employed the Flamelet Generated Manifold (FGM) approach to effectively capture the interactions between the turbulence and chemical reactions, providing high-fidelity data on flame behaviour and pollutant formation. The simulation was based on the Sandia Flame D specification, utilizing a detailed mesh to accurately represent flow features and flame dynamics. To enhance real-time prediction capabilities, three ML models, Neural Networks (NN), Linear Regression (LR), and Decision Tree Regression (DTR), were trained on the LES data. Comparative analysis using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Pearson Coefficient (PC), and R-squared (R2) identified the NN model as the most effective one. The NN model demonstrated high accuracy in predicting species mass fractions and flame patterns, significantly outperforming traditional LES solvers in terms of computational efficiency. The study also highlighted the considerable computational speedup achieved by the NN model, making it approximately 17.25 times faster than traditional LES solvers. Despite some limitations, such as handling large dataset fluctuations, the ML models have shown promise for future applications in combustion simulations.
Amirali Shateri、Zhiyin Yang、Jianfei Xie
热力工程、热机计算技术、计算机技术
Amirali Shateri,Zhiyin Yang,Jianfei Xie.Machine learning-based prediction of species mass fraction and flame characteristics in partially premixed turbulent jet flame[EB/OL].(2025-05-02)[2025-06-15].https://arxiv.org/abs/2505.01201.点此复制
评论