|国家预印本平台
首页|Brownian behaviour of the Riemann zeta function around the critical line

Brownian behaviour of the Riemann zeta function around the critical line

Brownian behaviour of the Riemann zeta function around the critical line

来源:Arxiv_logoArxiv
英文摘要

We establish a Brownian extension to Selberg's central limit theorem for the Riemann zeta function. This implies various limiting distributions for $\zeta$, including an analogue of the reflection principle for the maximum of the Brownian motion: as $T$ diverges, for any $u>0$ we have \[ \frac{1}{T}\cdot {\rm meas}\Big\{0\leq t\leq T:\max_{\sigma\geq \tfrac{1}{2}}\log|\zeta(\sigma+i t)|\geq u \sqrt{\tfrac{1}{2}\log \log T} \Big\}\to 2 \displaystyle\int_u^{\infty} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}\mathrm{d} x. \]

Louis Vassaux

数学

Louis Vassaux.Brownian behaviour of the Riemann zeta function around the critical line[EB/OL].(2025-05-12)[2025-07-19].https://arxiv.org/abs/2505.07352.点此复制

评论