Courbes de Fermat et principe de Hasse
Courbes de Fermat et principe de Hasse
Let $p\geq 3$ be a prime number. A Fermat curve over $\mathbb{Q}$ of exponent $p$ is defined by an equation of the shape $ax^p+by^p+cz^p=0$, where $a,b,c$ are non-zero rational numbers. We prove in this article that there exist infinitely many Fermat curves defined over $\mathbb{Q}$, of exponent $p$, pairwise non $\mathbb{Q}$-isomorphic, contradicting the Hasse principle.
Alain Kraus
数学
Alain Kraus.Courbes de Fermat et principe de Hasse[EB/OL].(2025-05-13)[2025-06-29].https://arxiv.org/abs/2505.08363.点此复制
评论