On lattice tilings of $\mathbb{Z}^n$ by limited magnitude error balls $\mathcal{B}(n,2,k_{1},k_{2})$ with $k_1>k_2$
On lattice tilings of $\mathbb{Z}^n$ by limited magnitude error balls $\mathcal{B}(n,2,k_{1},k_{2})$ with $k_1>k_2$
Lattice tilings of $\mathbb{Z}^n$ by limited-magnitude error balls correspond to linear perfect codes under such error models and play a crucial role in flash memory applications. In this work, we establish three main results. First, we fully determine the existence of lattice tilings by $\mathcal{B}(n,2,3,0)$ in all dimensions $n$. Second, we completely resolve the case $k_1=k_2+1$. Finally, we prove that for any integers $k_1>k_2\ge0$ where $k_1+k_2+1$ is composite, no lattice tiling of $\mathbb{Z}^n$ by the error ball $\mathcal{B}(n,2,k_1,k_2)$ exists for sufficiently large $n$.
Ka Hin Leung、Ran Tao、Daohua Wang、Tao Zhang
数学
Ka Hin Leung,Ran Tao,Daohua Wang,Tao Zhang.On lattice tilings of $\mathbb{Z}^n$ by limited magnitude error balls $\mathcal{B}(n,2,k_{1},k_{2})$ with $k_1>k_2$[EB/OL].(2025-05-13)[2025-07-21].https://arxiv.org/abs/2505.08495.点此复制
评论