Hyperreflexivity of von Neumann algebras and similarity of finitely generated $C^*$-algebras
Hyperreflexivity of von Neumann algebras and similarity of finitely generated $C^*$-algebras
Let $\cl A$ be a $C^*$-algebra. We say that $\cl A$ satisfies the SP if every bounded homomorphism $\cl A\to B(K)$, with $K$ a Hilbert space, is similar to a $*$-homomorphism. We introduce the following hypotheses: EPH.1 For every hyperreflexive von Neumann algebra $\cl A$ acting on the Hilbert space $H$ and every projection $Q\in B(H)$ the algebra $\cl A\vee \{Q\}^{''}$ is hyperreflexive. EPH.2 For every completely hyperreflexive von Neumann algebra $\cl A$ acting on the Hilbert space $H$ and every projection $Q\in B(H)$ the algebra $\cl A\wedge \{Q\}'$ is completely hyperreflexive. EPH.3 For every $Q_1, Q_2,...,Q_n, n\in \bb N$ projections the algebra $$\{Q_1\otimes I _{\ell^2(I)} \}'\wedge ...\wedge\{Q_n\otimes I _{\ell^2(I)}\}'$$ is hyperreflexive for all cardinals $I.$ We prove that EPH.1 implies EPH.2, EPH.2 implies EPH.3 and that EPH.3 is equivalent to the statement that every finitely generated $C^*$-algebra satisfies the SP.
G. K. Eleftherakis、V. I. Paulsen
数学
G. K. Eleftherakis,V. I. Paulsen.Hyperreflexivity of von Neumann algebras and similarity of finitely generated $C^*$-algebras[EB/OL].(2025-05-13)[2025-06-03].https://arxiv.org/abs/2505.08720.点此复制
评论