Sharp bounds for maximal sums of odd order Dirichlet characters
Sharp bounds for maximal sums of odd order Dirichlet characters
Let $g \geq 3$ be fixed and odd, and for large $q$ let $\chi$ be a primitive Dirichlet character modulo $q$ of order $g$. Conditionally on GRH we improve the existing upper bounds in the P\'{o}lya-Vinogradov inequality for $\chi$, showing that $$ M(\chi) := \max_{t \geq 1} \left|\sum_{n \leq t} \chi(n) \right| \ll \sqrt{q} \frac{(\log\log q)^{1-\delta_g} (\log\log\log\log\log q)^{\delta_g}}{(\log\log\log q)^{1/4}}, $$ where $\delta_g := 1-\tfrac{g}{\pi}\sin(\pi/g)$. Furthermore, we show unconditionally that there is an infinite sequence of order $g$ primitive characters $\chi_j$ modulo $q_j$ for which $$ M(\chi_j) \gg \sqrt{q_j} \frac{(\log\log q_j)^{1-\delta_g} (\log\log\log\log\log q_j)^{\delta_g}}{(\log\log\log q_j)^{1/4}}, $$ so that our GRH bound is sharp up to the implicit constant. This improves on previous work of Granville and Soundararajan, of Goldmakher, and of Lamzouri and the author.
Alexander P. Mangerel
数学
Alexander P. Mangerel.Sharp bounds for maximal sums of odd order Dirichlet characters[EB/OL].(2025-05-12)[2025-06-03].https://arxiv.org/abs/2505.07651.点此复制
评论