The generalized trifference problem
The generalized trifference problem
We study the problem of finding the largest number $T(n, m)$ of ternary vectors of length $n$ such that for any three distinct vectors there are at least $m$ coordinates where they pairwise differ. For $m = 1$, this is the classical trifference problem which is wide open. We prove upper and lower bounds on $T(n, m)$ for various ranges of the parameter $m$ and determine the phase transition threshold on $m=m(n)$ where $T(n, m)$ jumps from constant to exponential in $n$. By relating the linear version of this problem to a problem on blocking sets in finite geometry, we give explicit constructions and probabilistic lower bounds. We also compute the exact values of this function and its linear variation for small parameters.
Anurag Bishnoi、Bart?omiej Kielak、Benedek Kovács、Zoltán Lóránt Nagy、Gábor Somlai、Máté Vizer、Zeyu Zheng
数学
Anurag Bishnoi,Bart?omiej Kielak,Benedek Kovács,Zoltán Lóránt Nagy,Gábor Somlai,Máté Vizer,Zeyu Zheng.The generalized trifference problem[EB/OL].(2025-05-12)[2025-06-05].https://arxiv.org/abs/2505.07706.点此复制
评论