CGM Data Analysis 2.0: Functional Data Pattern Recognition and Artificial Intelligence Applications
CGM Data Analysis 2.0: Functional Data Pattern Recognition and Artificial Intelligence Applications
New methods of CGM data analysis are emerging that are valuable for interpreting CGM patterns and underlying metabolic physiology. These new methods use functional data analysis and artificial intelligence (AI), including machine learning (ML). Compared to traditional metrics for evaluating CGM tracing results (CGM Data Analysis 1.0), these new methods, which we refer to as CGM Data Analysis 2.0, can provide a more detailed understanding of glucose fluctuations and trends and enable more personalized and effective diabetes management strategies once translated into practical clinical solutions.
David C. Klonoff、Richard M. Bergenstal、Eda Cengiz、Mark A. Clements、Daniel Espes、Juan Espinoza、David Kerr、Boris Kovatchev、David M. Maahs、Julia K. Mader、Nestoras Mathioudakis、Ahmed A. Metwally、Shahid N. Shah、Bin Sheng、Michael P. Snyder、Guillermo Umpierrez、Alessandra T. Ayers、Cindy N. Ho、Elizabeth Healey
医学研究方法医学现状、医学发展
David C. Klonoff,Richard M. Bergenstal,Eda Cengiz,Mark A. Clements,Daniel Espes,Juan Espinoza,David Kerr,Boris Kovatchev,David M. Maahs,Julia K. Mader,Nestoras Mathioudakis,Ahmed A. Metwally,Shahid N. Shah,Bin Sheng,Michael P. Snyder,Guillermo Umpierrez,Alessandra T. Ayers,Cindy N. Ho,Elizabeth Healey.CGM Data Analysis 2.0: Functional Data Pattern Recognition and Artificial Intelligence Applications[EB/OL].(2025-05-10)[2025-06-30].https://arxiv.org/abs/2505.07885.点此复制
评论