|国家预印本平台
首页|On the critical length conjecture for spherical Bessel functions in CAGD

On the critical length conjecture for spherical Bessel functions in CAGD

On the critical length conjecture for spherical Bessel functions in CAGD

来源:Arxiv_logoArxiv
英文摘要

A conjecture of J.M. Carnicer, E. Mainar and J.M. Pe\~{n}a states that the critical length of the space $P_{n}\odot C_{1}$ generated by the functions $x^{k}\sin x$ and $x^{k}\cos x$ for $k=0,...n$ is equal to the first positive zero $j_{n+\frac{1}{2},1}$ of the Bessel function $J_{n+\frac{1}{2}}$ of the first kind. It is known that the conjecture implies the following statement (D3): the determinant of the Hankel matrix \begin{equation} \left( \begin{array} [c]{ccc} f & f^{\prime} & f^{\prime\prime}\\ f^{\prime} & f^{\prime\prime} & f^{\left( 3\right) }\\ f^{\prime\prime} & f^{\prime\prime\prime} & f^{\left( 4\right) } \end{array} \right) \label{eqabstract} \end{equation} does not have a zero in the interval $(0,j_{n+\frac{1}{2},1})$ whenever $f=f_{n}$ is given by $f_{n}\left( x\right) =\sqrt{\frac{\pi}{2}} x^{n+\frac{1}{2}}J_{n+\frac{1}{2}}\left( x\right) .$ In this paper we shall prove (D3) and various generalizations.

Ognyan Kounchev、Hermann Render

数学

Ognyan Kounchev,Hermann Render.On the critical length conjecture for spherical Bessel functions in CAGD[EB/OL].(2025-05-15)[2025-07-01].https://arxiv.org/abs/2505.09964.点此复制

评论