On the critical length conjecture for spherical Bessel functions in CAGD
On the critical length conjecture for spherical Bessel functions in CAGD
A conjecture of J.M. Carnicer, E. Mainar and J.M. Pe\~{n}a states that the critical length of the space $P_{n}\odot C_{1}$ generated by the functions $x^{k}\sin x$ and $x^{k}\cos x$ for $k=0,...n$ is equal to the first positive zero $j_{n+\frac{1}{2},1}$ of the Bessel function $J_{n+\frac{1}{2}}$ of the first kind. It is known that the conjecture implies the following statement (D3): the determinant of the Hankel matrix \begin{equation} \left( \begin{array} [c]{ccc} f & f^{\prime} & f^{\prime\prime}\\ f^{\prime} & f^{\prime\prime} & f^{\left( 3\right) }\\ f^{\prime\prime} & f^{\prime\prime\prime} & f^{\left( 4\right) } \end{array} \right) \label{eqabstract} \end{equation} does not have a zero in the interval $(0,j_{n+\frac{1}{2},1})$ whenever $f=f_{n}$ is given by $f_{n}\left( x\right) =\sqrt{\frac{\pi}{2}} x^{n+\frac{1}{2}}J_{n+\frac{1}{2}}\left( x\right) .$ In this paper we shall prove (D3) and various generalizations.
Ognyan Kounchev、Hermann Render
数学
Ognyan Kounchev,Hermann Render.On the critical length conjecture for spherical Bessel functions in CAGD[EB/OL].(2025-05-15)[2025-07-01].https://arxiv.org/abs/2505.09964.点此复制
评论