|国家预印本平台
首页|Existence of solutions to the semilinear damped wave equation with non-$L^2$ slowly decaying data : polynomial nonlinearity case

Existence of solutions to the semilinear damped wave equation with non-$L^2$ slowly decaying data : polynomial nonlinearity case

Existence of solutions to the semilinear damped wave equation with non-$L^2$ slowly decaying data : polynomial nonlinearity case

来源:Arxiv_logoArxiv
英文摘要

We study the Cauchy problem of the semilinear damped wave equation with polynomial nonlinearity, and establish the local and global existence of the solution for slowly decaying initial data not belonging to $L^2(\mathbb{R}^n)$ in general. Our approach is based on the $L^p$-$L^q$ estimates of linear solutions and the fractional Leibniz rule in suitable homogeneous Besov spaces.

Masahiro Ikeda、Takahisa Inui、Yuta Wakasugi

数学

Masahiro Ikeda,Takahisa Inui,Yuta Wakasugi.Existence of solutions to the semilinear damped wave equation with non-$L^2$ slowly decaying data : polynomial nonlinearity case[EB/OL].(2025-05-15)[2025-06-03].https://arxiv.org/abs/2505.10768.点此复制

评论