|国家预印本平台
首页|Bayesian Hierarchical Invariant Prediction

Bayesian Hierarchical Invariant Prediction

Bayesian Hierarchical Invariant Prediction

来源:Arxiv_logoArxiv
英文摘要

We propose Bayesian Hierarchical Invariant Prediction (BHIP) reframing Invariant Causal Prediction (ICP) through the lens of Hierarchical Bayes. We leverage the hierarchical structure to explicitly test invariance of causal mechanisms under heterogeneous data, resulting in improved computational scalability for a larger number of predictors compared to ICP. Moreover, given its Bayesian nature BHIP enables the use of prior information. In this paper, we test two sparsity inducing priors: horseshoe and spike-and-slab, both of which allow us a more reliable identification of causal features. We test BHIP in synthetic and real-world data showing its potential as an alternative inference method to ICP.

Francisco Madaleno、Pernille Julie Viuff Sand、Francisco C. Pereira、Sergio Hernan Garrido Mejia

计算技术、计算机技术

Francisco Madaleno,Pernille Julie Viuff Sand,Francisco C. Pereira,Sergio Hernan Garrido Mejia.Bayesian Hierarchical Invariant Prediction[EB/OL].(2025-05-16)[2025-06-23].https://arxiv.org/abs/2505.11211.点此复制

评论