|国家预印本平台
首页|基于深度学习的多模态漏洞检测方法

基于深度学习的多模态漏洞检测方法

中文摘要英文摘要

随着计算机技术的普及,代码安全性问题成为制约其发展的关键因素。本文提出一个基于深度学习的多模态融合漏洞检测模型,其通过结合双向循环神经网络-支持向量机(BiLSTM-SVM)、串并行卷积双向循环网络模型结合集成分类算法(CNN-BiLSTM-EC)和混合模型(MultiFusionNet)三个神经网络模型,并通过代码对齐算法将源代码和汇编代码建立精确的对应关系,融合成为混合代码,最后通过多模态混合融合策略,同时保留了各特征的独特信息和跨特征的组合特征,提供了最全面的代码表示。基于SARD数据集的实验表明,本方法取得F1-score平均达94%以上的性能,明显优于单一模态方法。该研究为代码安全性检测提供了新型技术路径。

With the popularization of computer technology, code security issues have become a key factor restricting its development. This article proposes a multi-modal fusion vulnerability detection model based on deep learning. It combines a bidirectional recurrent neural network support vector machine (BiLSTM-SVM), a serial parallel convolutional bidirectional recurrent network model, an ensemble classification algorithm (CNN-BiLSTM-EC), and a hybrid model (MultiFusionNet), and establishes an accurate correspondence between source code and assembly code through a code alignment algorithm, fusing them into a hybrid code. Finally, through a multi-modal hybrid fusion strategy, it preserves the unique information of each feature and the combined features across features, providing the most comprehensive code representation. Experiments based on SARD data sets show that this method achieves an average performance of more than 94% for F1 core, which is significantly better than the single mode method. This study provides a new technological path for code security detection.

孙耀楠、何永忠

北京交通大学网络空间安全学院,北京 100044北京交通大学网络空间安全学院,北京 100044

计算技术、计算机技术

漏洞检测深度学习多模态融合代码对齐

Vulnerability detectionDeep learningMultimodal fusionCode alignment

孙耀楠,何永忠.基于深度学习的多模态漏洞检测方法[EB/OL].(2025-05-20)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/202505-112.点此复制

评论