|国家预印本平台
首页|基于RFMI特征选择的卫星网络入侵检测技术

基于RFMI特征选择的卫星网络入侵检测技术

中文摘要英文摘要

随着卫星互联网技术的发展,卫星星座部署和太空网络能力日益复杂,针对卫星节点的网络安全威胁也显著升级。太空资产现在面临着恶意行为者的持续攻击,他们试图通过复杂的网络攻击来破坏敏感数据或耗尽有限的计算资源。在这种背景下,入侵检测系统成为太空网络安全架构的重要组成部分,是抵御卫星网络生态系统不断演变的漏洞的重要防御机制。由于卫星系统远离地面、资源受限以及多维数据复杂性带来的挑战,因此需要专用的安全架构。为了应对这些挑战,本研究提出了一种采用优化特征选择的资源高效的入侵检测方法。我们引入了一种基于 RFMI(随机森林-互信息)的新型算法,该算法通过三部分优化系统地识别最佳特征子集:最大化特征重要性、增强类相关性和最小化冗余。实验结果表明,我们提出的特征选择结构在各种评价指标上都取得了较好的效果,并能很好地适应卫星互联网环境。

With the rapid advancement of satellite internet technologies and the maturation of sophisticated constellation deployments and networking capabilities, cyberattacks targeting satellite nodes have escalated in both frequency and sophistication. Space-based assets now serve as prime targets for malicious actors seeking to either exfiltrate critical data or exhaust onboard computational resources through coordinated exploitation attempts. In this context, intrusion detection systems have emerged as critical components of space network security architectures, serving as vital defense mechanisms against evolving vulnerabilities in space-based network ecosystems. Satellite systems require dedicated security architectures due to their geographically isolated deployment, inherent resource-constrained nature, and the challenges posed by multidimensional data complexities.To address these challenges, this study proposes a resource-efficient intrusion detection methodology that employs optimized feature selection. We introduce a novel RFMI-based algorithm designed to systematically identify optimal feature subsets through tripartite optimization: maximizing feature importance, strengthening class correlation, and minimizing redundancy. Experimental results demonstrate that the proposed algorithm exhibits high robustness, achieves strong performance across evaluation metrics, and adapts effectively to the satellite internet environment.

李亚红、闫晓丹

北京邮电大学电子工程学院,北京 100876北京邮电大学电子工程学院,北京 100876

航空航天技术计算技术、计算机技术

卫星网络安全入侵检测特征选择随机森林,互信息卷积神经网络

Satellite Network SecurityIntrusion DetectionFeature SelectionRandom ForestMutual InformationCNN

李亚红,闫晓丹.基于RFMI特征选择的卫星网络入侵检测技术[EB/OL].(2025-05-20)[2025-05-23].http://www.paper.edu.cn/releasepaper/content/202505-118.点此复制

评论