基于大数据挖掘的烧结参数优化调控模型
烧结工艺作为高炉炼铁的重要组成部分,为高炉炼铁提供了70%~80%的含铁原料,能耗占了大约18%的钢铁工业总能耗,烧结工序存在着能耗高、生产波动大的问题,为了实现节能将本的目标,本文构建了基于大数据挖掘的烧结参数优化调控模型,该模型包括3个子模型,分别是参数寻优模型、操作参数追溯模型和操作参数预测模型。首先通过烧结工序的优化模型,我们识别出了影响核心经济指标的核心参数,并据此确定了最优的操作参数集合;再利用寻优模型确定的最佳操作参数集,深入探究波动根源,通过追溯误差来识别关键的影响要素,并据此进行动态调整;建立了ARIMA时间序列模型,突破了历史数据静态校验的固有局限,最后构建基于径向基函数神经网络的预测模型,为烧结优化提供参考。在某钢厂生产数据的实证中,模型使利用系数稳定在1.47,日增产47.52 t,年增产值1387万元。同时燃料单耗降低1.54 kg/t,年节省燃料费用620万元,转鼓指数提升至77.4±0.1的稳定区间。基于大数据挖掘的烧结参数优化调控模型为钢铁企业实现绿色高效生产提供了创新解决方案。
Sintering process, as an important part of blast furnace ironmaking, provides 70%~80% of iron-containing raw materials for blast furnace ironmaking, and the energy consumption accounts for about 18% of the total energy consumption of the iron and steel industry, the sintering process exists the problem of high energy consumption and production fluctuation, in order to achieve the goal of energy saving and cost saving, this paper constructs a sintering parameter optimization and regulation model based on big data mining, which consists of three sub-models, namely, parameter The model includes three sub-models, namely, parameter optimization model, operation parameter traceability model and operation parameter prediction model. Firstly, through the optimization model of sintering process, we identify the core parameters affecting the core economic indexes and determine the optimal set of operating parameters accordingly; then, using the optimal set of operating parameters determined by the optimization model, we explore the root causes of fluctuations in depth, identify the key influencing elements through the retrospective error and make dynamic adjustments accordingly; we establish an ARIMA time-series model, which breaks through the inherent limitations of the static calibration of historical data, and finally, we construct a time-series model based on historical data, and then we establish a time-series model based on the prediction model. The ARIMA time series model is established, which breaks through the inherent limitations of static calibration of historical data, and finally, a prediction model based on radial basis function neural network is constructed to provide a reference for sintering optimization. In the empirical demonstration of the production data of a steel plant, the model stabilizes the utilization factor at 1.47, increases the daily production by 47.52 t, and increases the annual output value by 13.87 million yuan. Meanwhile, the fuel unit consumption was reduced by 1.54 kg/t, saving 6.2 million yuan in annual fuel cost, and the drum index was improved to a stable interval of 77.4±0.1. The sintering parameter optimization and regulation model based on big data mining provides an innovative solution for iron and steel enterprises to realize green and efficient production.
吴濠成、白皓
北京科技大学冶金与生态工程学院,北京 100083北京科技大学冶金与生态工程学院,北京 100083
炼铁自动化技术、自动化技术设备计算技术、计算机技术
大数据挖掘烧结参数优化神经网络动态调控
big data miningsintering parameter optimizationneural networkdynamic regulation
吴濠成,白皓.基于大数据挖掘的烧结参数优化调控模型[EB/OL].(2025-05-20)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/202505-115.点此复制
评论