|国家预印本平台
首页|Elementary symmetric polynomials under the fixed point measure

Elementary symmetric polynomials under the fixed point measure

Elementary symmetric polynomials under the fixed point measure

来源:Arxiv_logoArxiv
英文摘要

We identify a surprising inequality satisfied by elementary symmetric polynomials under the action of the fixed point measure of a random permutation. Concretely, for any collection of $n$ non-negative real numbers $a_1, \dots, a_n \in \mathbb{R}_{\geq 0}$, we prove that \[ \frac{1}{n!} \sum_{\pi \in S_n} \left[\prod_{\{i:i=\pi(i)\}} a_i\right] \ge \frac{1}{\binom{n}{2}} \sum_{S \in\binom{[n]}{2}} \left[ \left(\prod_{\{i \in S\}} a_i \right)^{1/2}\right], \] and this bound is sharp. To prove this elementary inequality, we construct a collection of differential operators to set up a monotone flow that then allows us to establish the inequality.

Ayush Khaitan、Ishan Mata、Bhargav Narayanan

数学

Ayush Khaitan,Ishan Mata,Bhargav Narayanan.Elementary symmetric polynomials under the fixed point measure[EB/OL].(2025-05-17)[2025-07-16].https://arxiv.org/abs/2505.12178.点此复制

评论