|国家预印本平台
首页|Complete quasimaps to $\mathsf{Bl}_{\mathbb{P}^s}(\mathbb{P}^r)$

Complete quasimaps to $\mathsf{Bl}_{\mathbb{P}^s}(\mathbb{P}^r)$

Complete quasimaps to $\mathsf{Bl}_{\mathbb{P}^s}(\mathbb{P}^r)$

来源:Arxiv_logoArxiv
英文摘要

We introduce a moduli space of ``complete quasimaps'' to $\mathsf{Bl}_{\mathbb{P}^s}(\mathbb{P}^r)$. The construction, following previous work for curves on projective spaces, essentially proceeds by blowing up Ciocan-Fontanine--Kim's space of quasimaps at loci where sections of line bundles are linearly dependent. We conjecture that tautological intersection numbers on these moduli spaces give enumerative counts of curves of fixed complex structure on $X$ subject to general incidence conditions, in contrast with traditional compactifications of the moduli spaces of maps. A result of Farkas guarantees that these spaces are pure of expected dimension. The conjecture is proven in dimension 2, where the main input is a Brill-Noether theorem for general curves on toric surfaces.

Alessio Cela、Carl Lian

数学

Alessio Cela,Carl Lian.Complete quasimaps to $\mathsf{Bl}_{\mathbb{P}^s}(\mathbb{P}^r)$[EB/OL].(2025-05-20)[2025-06-29].https://arxiv.org/abs/2505.14672.点此复制

评论