A De Giorgi conjecture on the regularity of minimizers of Cartesian area in 1D
A De Giorgi conjecture on the regularity of minimizers of Cartesian area in 1D
We prove a $C^{1,1}$-regularity of minimizers of the functional $$ \int_I \sqrt{1+|Du|^2} + \int_I |u-g|ds,\quad u\in BV(I), $$ provided $I\subset\mathbb{R}$ is a bounded open interval and $\|g\|_\infty$ is sufficiently small, thus partially establishing a De Giorgi conjecture in dimension one and codimension one. We also extend our result to a suitable anisotropic setting.
Giovanni Bellettini、Shokhrukh Yu. Kholmatov
数学
Giovanni Bellettini,Shokhrukh Yu. Kholmatov.A De Giorgi conjecture on the regularity of minimizers of Cartesian area in 1D[EB/OL].(2025-05-21)[2025-06-25].https://arxiv.org/abs/2505.15586.点此复制
评论