Foundations of Unknown-aware Machine Learning
Foundations of Unknown-aware Machine Learning
Ensuring the reliability and safety of machine learning models in open-world deployment is a central challenge in AI safety. This thesis develops both algorithmic and theoretical foundations to address key reliability issues arising from distributional uncertainty and unknown classes, from standard neural networks to modern foundation models like large language models (LLMs). Traditional learning paradigms, such as empirical risk minimization (ERM), assume no distribution shift between training and inference, often leading to overconfident predictions on out-of-distribution (OOD) inputs. This thesis introduces novel frameworks that jointly optimize for in-distribution accuracy and reliability to unseen data. A core contribution is the development of an unknown-aware learning framework that enables models to recognize and handle novel inputs without labeled OOD data. We propose new outlier synthesis methods, VOS, NPOS, and DREAM-OOD, to generate informative unknowns during training. Building on this, we present SAL, a theoretical and algorithmic framework that leverages unlabeled in-the-wild data to enhance OOD detection under realistic deployment conditions. These methods demonstrate that abundant unlabeled data can be harnessed to recognize and adapt to unforeseen inputs, providing formal reliability guarantees. The thesis also extends reliable learning to foundation models. We develop HaloScope for hallucination detection in LLMs, MLLMGuard for defending against malicious prompts in multimodal models, and data cleaning methods to denoise human feedback used for better alignment. These tools target failure modes that threaten the safety of large-scale models in deployment. Overall, these contributions promote unknown-aware learning as a new paradigm, and we hope it can advance the reliability of AI systems with minimal human efforts.
Xuefeng Du
计算技术、计算机技术
Xuefeng Du.Foundations of Unknown-aware Machine Learning[EB/OL].(2025-05-20)[2025-06-28].https://arxiv.org/abs/2505.14933.点此复制
评论