|国家预印本平台
首页|Damping oscillatory Integrals of convex analytic functions

Damping oscillatory Integrals of convex analytic functions

Damping oscillatory Integrals of convex analytic functions

来源:Arxiv_logoArxiv
英文摘要

Let $H\subset \mathbb R^{d+1}$ be a compact, convex, analytic hypersurface of finite type with a smooth measure $\sigma $ on $H$. Let $\kappa$ denote the Gaussian curvature on $H$. We consider the oscillatory integral $(\kappa^{1/2} \sigma)^\wedge$ with the damping factor $\kappa^{1/2}$. We prove the optimal decay estimate \[ |(\kappa^{1/2} \sigma )^\wedge(\xi)|\le C|\xi|^{-d/2}\] for $d=2,3,$ and with an extra logarithmic factor for $d=4$. Furthermore, we prove the same estimates for $(\kappa^{1/2+it} \sigma )^\wedge$ with $C$ growing polynomially in $|t|$. As consequences, we obtain the best possible estimates for the convolution, maximal, and adjoint restriction operators given by the surface $H$ with the mitigating factors of optimal orders. In particular, for $d=2, 3$, we prove the $L^2$--$L^{2(d+2)/(d+4)}$ restriction estimate to the surface $H$ with the affine surface measure $\kappa^{1/(d+2)} \sigma$. Our work was inspired by the stationary set method due to Basu--Guo--Zhang--Zorin-Kranich.

Sanghyuk Lee、Sewook Oh

数学

Sanghyuk Lee,Sewook Oh.Damping oscillatory Integrals of convex analytic functions[EB/OL].(2025-05-21)[2025-06-13].https://arxiv.org/abs/2505.15492.点此复制

评论