|国家预印本平台
首页|Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces

Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces

Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces

来源:Arxiv_logoArxiv
英文摘要

Let $\Lambda_s$ denote the Lipschitz space of order $s\in(0,\infty)$ on $\mathbb{R}^n$, which consists of all $f\in\mathfrak{C}\cap L^\infty$ such that, for some constant $L\in(0,\infty)$ and some integer $r\in(s,\infty)$, \begin{equation*} \label{0-1}\Delta_r f(x,y): =\sup_{|h|\leq y} |\Delta_h^r f(x)|\leq L y^s, \ x\in\mathbb{R}^n, \ y \in(0, 1]. \end{equation*} Here (and throughout the article) $\mathfrak{C}$ refers to continuous functions, and $\Delta_h^r$ is the usual $r$-th order difference operator with step $h\in\mathbb{R}^n$. For each $f\in \Lambda_s$ and $\varepsilon\in(0,L)$, let $ S(f,\varepsilon):= \{ (x,y)\in\mathbb{R}^n\times [0,1]: \frac {\Delta_r f(x,y)}{y^s}>\varepsilon\}$, and let $\mu: \mathcal{B}(\mathbb{R}_+^{n+1})\to [0,\infty]$ be a suitably defined nonnegative extended real-valued function on the Borel $\sigma$-algebra of subsets of $\mathbb{R}_+^{n+1}$. Let $\varepsilon(f)$ be the infimum of all $\varepsilon\in(0,\infty)$ such that $\mu(S(f,\varepsilon))<\infty$. The main target of this article is to characterize the distance from $f$ to a subspace $V\cap \Lambda_s$ of $\Lambda_s$ for various function spaces $V$ (including Sobolev, Besov--Triebel--Lizorkin, and Besov--Triebel--Lizorkin-type spaces) in terms of $\varepsilon(f)$, showing that \begin{equation*} \varepsilon(f)\sim \mathrm{dist} (f, V\cap \Lambda_s)_{\Lambda_s}: = \inf_{g\in \Lambda_s\cap V} \|f-g\|_{\Lambda_s}.\end{equation*} Moreover, we present our results in a general framework based on quasi-normed lattices of function sequences $X$ and Daubechies $s$-Lipschitz $X$-based spaces.

Feng Dai、Eero Saksman、Dachun Yang、Wen Yuan、Yangyang Zhang

数学

Feng Dai,Eero Saksman,Dachun Yang,Wen Yuan,Yangyang Zhang.Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces[EB/OL].(2025-05-21)[2025-06-21].https://arxiv.org/abs/2505.16116.点此复制

评论