Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces
Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces
Let $\Lambda_s$ denote the Lipschitz space of order $s\in(0,\infty)$ on $\mathbb{R}^n$, which consists of all $f\in\mathfrak{C}\cap L^\infty$ such that, for some constant $L\in(0,\infty)$ and some integer $r\in(s,\infty)$, \begin{equation*} \label{0-1}\Delta_r f(x,y): =\sup_{|h|\leq y} |\Delta_h^r f(x)|\leq L y^s, \ x\in\mathbb{R}^n, \ y \in(0, 1]. \end{equation*} Here (and throughout the article) $\mathfrak{C}$ refers to continuous functions, and $\Delta_h^r$ is the usual $r$-th order difference operator with step $h\in\mathbb{R}^n$. For each $f\in \Lambda_s$ and $\varepsilon\in(0,L)$, let $ S(f,\varepsilon):= \{ (x,y)\in\mathbb{R}^n\times [0,1]: \frac {\Delta_r f(x,y)}{y^s}>\varepsilon\}$, and let $\mu: \mathcal{B}(\mathbb{R}_+^{n+1})\to [0,\infty]$ be a suitably defined nonnegative extended real-valued function on the Borel $\sigma$-algebra of subsets of $\mathbb{R}_+^{n+1}$. Let $\varepsilon(f)$ be the infimum of all $\varepsilon\in(0,\infty)$ such that $\mu(S(f,\varepsilon))<\infty$. The main target of this article is to characterize the distance from $f$ to a subspace $V\cap \Lambda_s$ of $\Lambda_s$ for various function spaces $V$ (including Sobolev, Besov--Triebel--Lizorkin, and Besov--Triebel--Lizorkin-type spaces) in terms of $\varepsilon(f)$, showing that \begin{equation*} \varepsilon(f)\sim \mathrm{dist} (f, V\cap \Lambda_s)_{\Lambda_s}: = \inf_{g\in \Lambda_s\cap V} \|f-g\|_{\Lambda_s}.\end{equation*} Moreover, we present our results in a general framework based on quasi-normed lattices of function sequences $X$ and Daubechies $s$-Lipschitz $X$-based spaces.
Feng Dai、Eero Saksman、Dachun Yang、Wen Yuan、Yangyang Zhang
数学
Feng Dai,Eero Saksman,Dachun Yang,Wen Yuan,Yangyang Zhang.Difference and Wavelet Characterizations of Distances from Functions in Lipschitz Spaces to Their Subspaces[EB/OL].(2025-05-21)[2025-06-21].https://arxiv.org/abs/2505.16116.点此复制
评论