|国家预印本平台
首页|PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association

PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association

PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association

来源:Arxiv_logoArxiv
英文摘要

We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.

Abdul Hannan、Muhammad Arslan Manzoor、Shah Nawaz、Muhammad Irzam Liaqat、Markus Schedl、Mubashir Noman

通信

Abdul Hannan,Muhammad Arslan Manzoor,Shah Nawaz,Muhammad Irzam Liaqat,Markus Schedl,Mubashir Noman.PAEFF: Precise Alignment and Enhanced Gated Feature Fusion for Face-Voice Association[EB/OL].(2025-05-22)[2025-07-16].https://arxiv.org/abs/2505.17002.点此复制

评论