Two tuples of noncommutative Orlicz sequence spaces and some geometry properties
Two tuples of noncommutative Orlicz sequence spaces and some geometry properties
The primary contribution of this study lies in proposing a new concept termed $2$-tuples of noncommutative Orlicz sequence spaces $\bigoplus\limits_{j=1}^{2}S_{\varphi_{j},p}$, where $S_{\varphi_{j}}$ denotes a noncommutative Orlicz sequence space. By leveraging the three-line theorem, we establish the Riesz-Thorin interpolation theorem for $\bigoplus\limits_{j=1}^{2}S_{\varphi_{j},p}$. As applications, we derive bound for the nonsquare and von Neumann-Jordan constant of noncommutative Orlicz space $S_{\varphi_{s}} (0<s\leq1)$, where $\varphi_{s}$ is an intermediate function.
Ma Zhenhua、Jiang Lining
数学
Ma Zhenhua,Jiang Lining.Two tuples of noncommutative Orlicz sequence spaces and some geometry properties[EB/OL].(2025-05-21)[2025-06-14].https://arxiv.org/abs/2505.16111.点此复制
评论